Die Kristallstruktur von $Cr_3(C, N)_2$ und Cr_2VC_2

Von

P. Ettmayer, G. Vinek und H. Rassaerts

Aus dem Institut für chemische Technologie anorganischer Stoffe, der Technischen Hochschule Wien,

dem Institut für physikalische Chemie der Universität Wien und der Metallwerk Plansee A.G., Reutte, Tirol

Mit 1 Abbildung

(Eingegangen am 1. Juni 1966)

Die Kristallstruktur der isotypen Phasen $\operatorname{Cr}_3(C,N)_2$ und Cr_2VC_2 wird röntgenographisch bestimmt. Die Struktur gehört der Raumgruppe D_{2h}^{17} an; sie enthält sowohl oktaedrische wie auch trigonal-prismatische Bauelemente und steht in enger Beziehung zu Cr_3C_2 .

The crystal structure of the isostructural phases $Cr_3(C,N)_2$ and Cr_2VC_2 has been determined by X-ray diffraction method. It belongs to the space group D_{2h}^{17} and contains octahedral as well as trigonal-prismatic groups and is related to Cr_3C_2 .

Vor kurzem¹ wurde im System Cr—C—N eine ternäre Kristallart beobachtet, welche bei Stickstoffdruck oberhalb 20 atm (1300—1600°C) beständig ist. Ihre Zusammensetzung liegt bei etwa $Cr_3C_{1,6}N_{0,4}$, wobei keine Anzeichen für einen merkbaren Homogenitätsbereich festgestellt werden konnten. Es zeigte sich, daß diese Phase isotyp ist mit einem ternären Carbid im Dreistoff V—Cr—C². Dieser Phase wurde eine Formel Cr₂VC zugeordnet, obwohl sie einen zwar geringen, aber deutlichen Homogenitätsbereich aufweist. Wegen des relativ komplizierten Pulverdiagramms des Cr₂VC war eine Ermittlung der Struktur zunächst nicht möglich, doch wies eine Ähnlichkeit mit den Chromcarbiden einerseits und mit dem Zementit andererseits auf das Bestehen von trigonalen Baugruppen hin. Da das kritische Radienverhältnis r_X/r_T (X = Nichtmetall, T = Übergangselement) für typische Einlagerungsverbindungen

¹ P. Ettmayer, Mh. Chem. 97, 1248 (1966).

² H. Rassaerts, R. Kieffer und H. Nowotny, Mh. Chem. 96, 1536 (1965).

P. Ettmayer u. a.: Kristallstruktur von Cr₃(C, N)₂ und Cr₂VC₂ 1259

mit Oktaeder-Bauelementen für die beiden genannten Phasen gerade an der Grenze zu liegen kommt, schien eine Strukturaufklärung von besonderem Interesse.

Die Strukturbestimmung von $Cr_3C_{1,6}N_{0,4}$ und Cr_2VC_2 .

Es gelang, Einkristalle der Phase $\operatorname{Cr}_3\operatorname{Cl}_{1,6}\operatorname{N}_{0,4}$ zu erhalten. Drehkristallaufnahmen ließen sich mit der schon früher¹ angegebenen orthorhombischen Elementarzelle indizieren. Damit ist auch eine vollständige Indizierung der Pulveraufnahme von $\operatorname{Cr}_2\operatorname{VC}_2$ möglich, wie Tab. 1 erkennen läßt. Als Auslöschungen sämtlicher Aufnahmen findet man für (hkl) nur

Tabelle 1. Auswertung einer Pulveraufnahme von Cr_2VC_2 sowie Intensitätsberechnung für Cr_2VC_2 und $Cr_3(C,N)_2$; Chrom-K α -Strahlung

Index	$10^3 \cdot \sin^2 \theta$	$10^3 \cdot \sin^2 \theta$	Int,	Intensität beob.	
(hkl)	ber.	beob.	ber.	Cr_2VC_2	$Cr_3(C, N)_2$
(020)	60,6		2,7		
(120)	87,4		4,8		
(200)	107,2	107,5	22,3		SSS
(220)	167,8		0,0		••••••
(011)	174,3		8,1		·
(111)	201,1	201,2	399,8	\mathbf{st}	\mathbf{st}
(040)	242,4	242,5	352,5	mst	m—st
(140)	269,2	269,1	117,4	s	s
(211)	281,5	281,6	436,1	\mathbf{st}	\mathbf{st}
(031)	295,5	295,8	286,4	m	m
(320)	301,8	303,0	807,8	\mathbf{sst}	\mathbf{sst}
(131)	322,3	321,6	463,4	\mathbf{st}	\mathbf{st}
(240)	348,6		10,5		
(231)	402,7	402,9	353,2	m-st	m-st
(311)	415,5	414,9	149,9	s	s
(400)	428,8	429,5	33,8	88	SS
(340)	483,6		0,2		
(420)	489,4		6,3		
(331)	536,7		5,3		
(051)	537,9		0,1		
(060)	545,4		1,5		
(151)	564,7	567,8	79,6	SS	SS
(160)	572,2		0,1		
(411)	603,1	605,6	118,0	8	s
(002)	636,6	637,8	201,9	m	m
(251)	645, 1	646,2	161,2	m	m
(260)	652,6	653,7	128,2	s	s
(440)	671,2		0,1		
(022)	697,2		0,1		
(431)	724,3		11,7		-
(122)	724,0	ali anna b	0,4		
(520)	730,6		14,5		

Index (<i>hkl</i>)	10 ³ • sin ³ θ ber.	$10^3 \cdot \sin^2 \theta$ beob.	Int. ber.	Intensität beob. Cr.vC. Cr.(C. N).	
(000)	749 0		95		
(202)	743,8	770 6	2,0		
(301)	779,1	719,0	170,1	m	m
(300)	780,0	188,2	162,0	111	111
(ZZZ)	804,3	046 1	195 5		~~~~
(011)	844,0	840,1	100,1	111	111 m
(042)	878,9	878,9	194,1	m	m
(071)	901,5 007.7	899,3	212,1		
(14Z)	905,5	904,9	91,9	s (u)	s (u)
(540)	912,4	913,5	77,5	ss	85
(171)	928,3	930,3	71,3	ss	ss
(322)	938,4	937,3	1000,0	SSU	SSU
(600)	964,8	965,5	331,7 799 g	sst	sst
(531)	965,5	,	732,0		Koingidang
(451)	966,7 060 C	020.0	102,0	~*	rt mit e.
(080)	969,6	969,8	248,0	SU	st mit a_2
(460)	974,2		107,9		VOII (331)
Tabelle 2	. Atomabst	ände in d	len Phasen	$\mathrm{Cr}_3(\mathrm{C},\mathrm{N})_2$	und Cr_2VC_2
			Cr ₃ (Ċ,	$N)_2$	$\mathrm{Cr}_2\mathrm{VC}_2$
m.		T_{1}	2.84 Å		2.87 \AA
-	· I	T_{1}	2.77		2.78
		\tilde{T}_{r}	2.50		2,52
		\tilde{T}_{τ}	2.67		2.68
		-1	-,••		,
7	n _r	T_{11}	2,71		2,72
-	- 1	T_{TT}	2,67		2,68
		T_{11}	2,92		2,93
*		T_{11}	2,92		2,93
			,		
7	C11	T_{I}	2,84		2,87
9	T_{II}	T_{11}	2,84		2,87
1	r ₁	$X_{\mathbf{I}}$	1,98		2,00
	-				
2	$T_{\rm II}$	$X_{\mathtt{I}}$	1,97		1,98
2	$T_{\mathbf{I}}$	X_{II}	2,11		2,12
					0.07
1	T_{II}	X_{II}	2,05		2,07

Fortsetzung (Tabelle 1)

 $T_{\rm I}$ Übergangselement (Cr,V) in Punktlage 8 f)

 $T_{\rm II}$ Übergangselement (Cr,V) in Punktlage 4 c)

 X_{I} Nichtmetall (C,N) in Punktlage 4 b)

X_{II} Nichtmetall (C,N) in Punktlage 4 c)

k + l = 2n und für h0l) nur h = 2n. Danach ergibt sich als charakteristisches Raumsystem D_{2h}^{17} . Mit einer experimentell ermittelten Dichte

von 6,50 g/cm³ für Cr₃C_{1,6}N_{0,4} wird $Z \approx 4$ Formelgewichte, das heißt 12 Cr-Atome und 8 (C + N)-Atome für Cr₃C_{1,6}N_{0,4} bzw. 8 Cr-Atome, 4 V-Atome und 8 C-Atome für Cr₂VC₂. Wie später noch diskutiert, spricht die Zusammensetzung für einen geordneten oder teilweise geordneten Zustand, wie dies häufig bei Komplexcarbiden der Fall ist³. Als Punktlagen kommen bei Cr₃(C, N)₂ in Frage:

8f) und 4c) für Chrom und 4b) und 4c) für Kohlenstoff und Stickstoff bzw. 8f) und 4c) für Chrom und Vanadin und 4b) und 4c) für Kohlenstoff.

Abb. 1. Atomlagen, projiziert auf (001); die schraffierten Teilchen liegen in c/2

Die Intensitätsrechnung wurde nur für statistische Verteilung durchgeführt, da eine röntgenographische Unterscheidung von C und N einerseits oder Cr und V andererseits nicht möglich ist. Mit nachstehenden Parametern

$$x_{\text{Cr}_{\text{I}}} = 0.070, x_{\text{Cr}_{\text{II}}} = 0.250, x_{\text{C}, N} = 0.250$$

 $y_{\text{Cr}_{\text{I}}} = 0.140, y_{\text{Cr}_{\text{II}}} = 0.400, y_{\text{C}, N} = 0.740$

besteht vollkommene Übereinstimmung zwischen berechneten und beobachteten Intensitäten für $Cr_3(C, N)_2$ und Cr_2VC_2 (Tab. 1).

Die Gitterparameter (in Å) von Cr₂VC₂ sind mit:

$$a = 6,99$$

 $b = 9,30$
 $c = 2,87$

nur wenig größer als jene von $Cr_3(C, N)_2$.

Aus Abb. 1 geht die Struktur hervor, die bemerkenswerterweise oktaedrische Bauelemente mit solchen trigonal-prismatischer Struktur vereinigt. Dabei sind die Oktaederlücken ein wenig kleiner als die trigonal-

³ H. Nowotny, W. Jeitschko und F. Benesovsky im Symposium sur la Métallurgie des Poudres, Paris 1964, Edition Métaux.

1262 P. Ettmayer u. a.: Kristallstruktur von Cr₃(C, N)₂ und Cr₂VC₂

prismatischen, was auf eine bevorzugte Besetzung der 4b)-Punktlagen durch Stickstoffatome hinweist, also eine teilweise Ordnung der Nichtmetallatome nahelegt. Andererseits gestattet die von Übergangsmetallatomen besetzte Punktlage 4c) die Aufnahme eines etwas größeren Metallatoms, was wiederum für eine Ordnung im Falle Cr_2VC_2 spricht. Da ferner von den typischen Einlagerungsverbindungen bekannt ist, daß das Nitrid kleiner als das jeweilige Carbid ist, versteht man auch in Hinblick auf das Radienverhältnis r_X/r_T den Einbau von Stickstoff in die Oktaederlücke, während dieses für den Kohlenstoff bereits außerhalb des kritischen Verhältnisses fällt. Das mittlere Radienverhältnis steht daher in sehr gutem Einklang mit dem gleichzeitigen Auftreten von Oktaedern und trigonalen Prismen.

Es soll schließlich noch die enge Beziehung dieses neuen Strukturtyps zu Cr_3C_2 herausgestellt werden, die sich bereits in den Zellabmessungen deutlich widerspiegelt. Bei fast gleicher *c*-Achse entspricht die Diagonale in (110) der *a*-Achse von Cr_3C_2 , in welcher Phase nur trigonale Prismen auftreten.

Herrn Prof. Dr. *R. Kieffer* danken wir für die Unterstützung dieser Arbeit. Herrn Prof. Dr. *H. Nowotny* schulden wir Dank für seine große Hilfe bei der Strukturaufklärung.